BESPICE WAVE USER'S MANUAL

Widget User's Manual

December 8, 2016

© Analog Flavor 2012-2016. All rights reserved.

BESPICE WAVE USER'S MANUAL

This document contains information that is proprietary to Analog Flavor. The software and
documentation are furnished under a license agreement. Use and distribution of the proprietary
information is only authorized in accordance with the terms of the license agreement . This document
may be copied in whole or in part for internal business purposes only, provided that this entire notice
appears in all copies.

This document is for information and instruction purposes. Analog Flavor reserves the right to make
changes in specifications and other information contained in this publication without prior notice.

ANALOG FLAVOR AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

ANALOG FLAVOR SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL,
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION
CONTAINED IN IT, EVEN IF ANALOG FLAVOR HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Analog Flavor EURL au capital de 5000 Euro
SIREN 814 075 727

3 bis, rue des Engenieres, 38360 Sassenage, France.
Telephone: +33 6 28 34 91 82
support@analogflavor.com

www.analogflavor.com

© Analog Flavor 2012-2016. All rights reserved. 2

BESPICE WAVE USER'S MANUAL

Table of Contents

Chapter 1 BeSpice Wave WIAGEL.......cooouvviiiiiiiieeeeeeeeeee et e e
1.1 Waveform File EXaAmPIES......cceeiieiiieiiiiiiieiieeieesiee ettt ettt
12 Interactive COMMANAS.........cocvvvvieiiiieiiieiiiieeeee et e e e e ee et e e e e e e e eeeeeeeeeeeeeaaeeas
121 Command Return VAIUES.ccuuveiieeiiiieeeiieee ettt
122 Command ReSUlt VAIUES.......ccuuvvviiiiiiiiiiiiieeeeee et
123 The Control PANEl...........eeiieiiiiei ettt e e e e e e e e aaaes
124 The Command LOZEET.......ccuuiiiiiieiiieeiiieerieeeseeeeieeeeee s teeesreeeeeaeeeareesnssaaeeseennnes
13 WiAGEE SEYIES....eeueieeiiieiie ettt ettt ettt ettt et e et e e e eabee et eeennbeeeeneee

Chapter 2 C/CH++ Application INteGIatiON.cceeeiviieieiieieeeeeeeeeeeiireeeeeeeeeeeeetrae e eeeeeeeas
2.1 The Header FIlS......couvviiiieiiieee ettt e e e e e e
2.2 The AcCeSS FUNCHOMNS.ccoovuvveeieiieeeeeieiiteeeee e e e eeeeettee et e e e e e eeeaaaaeeeeeeeeaeesasbaaannnes
2.3 Registering Callback FUNCLIONS.eeeieiiuiieeeeiiiee et eecree e eetae e e e e e e e e e
2.4 Linking the Shared LADIary.........cccveiriiieiiiiieiiiie ettt saeeesreee e e
2.5 Linking the Static LIDTATY.......cccueeiieriieiieiie ettt ettt 10

Chapter 3 The WINdOWS APT WIAGEL.......vvvviiiiiiiiiiieiieeieee e 11
3.1 Widget COMMANGS.......cceieiiiiiiieiienie ettt ettt et e sae et e st ebeesaeesseesnneeeenes 11
32 Integration to a Windows APpPliCAtiON.......cccuvvvveeiiiieiiiiiiieeeeeeeeeeeeeeeeeee e 11
33 Integration t0 @ WPE ApPPliCAtiON.......cccuveeeeeeiiieeeeireee et 12
34 Integration t0 @ Qt APPLICALION.ccoevvuvrreieiieeeeeeeieeeeee e et ees 12
3.5 Integration to a WXWidgets APPLCAtION........eeeeeecuveeeieiiieeeeeireee e e e e 13
3.6 Integration t0 @ TK APPlICATION.cccuuieeirieeiieeeiieerieeeteeeeee e e e e eree e e s eeraeeeeennes 13
3.7 Integration to a Tk Application i C...........cooiuvieiieiiriieeeeiieee et 13
3.8 Integration t0 @ PYthOn SCIIPt.......ccoovuveeiiiiiiiiiieeeeee e 14
3.8.1 Integration to a PyQt APPLICAtION.cccuviieieiiiiieeeeeireee ettt 14
3.82 Integration to @ WXPython APPlICAtiON..........coeevuvvveeiieieeieiiieeeee e e e e e 14
3.83 Integration to a Tk Inter APPlICATION.uveeeeeiureeeeeecireeeeeeieee e e e e e e e e e e e e 14

Chapter 4 TK Script INtEEIation......ccuveeeriieeeiieeeiieeeieeeeireeeieeeereeeeree e e e et e e eaaeeetaeeeensnbeeeeeeas 15
4.1 af DSPWAVE WIAGEL....c.veiuiiriiiiieiiieiteeee ettt 15
4.1.1 SYTIOPDSIS. ¢ uvveeenerieeiteeettteesiteeetteeetteeeteeeanteeessaeeessseeessseeessseeensseeensseesnssaesasssneeeesannnns 15
4.1.2 Widget SPECIfic OPLIONS.cceeuvrieeeeiiiee e et ettt eeeee e e e e e e e eaeaeeeas 15
4.1.3 Widget COmMMANCS........ccoveeeriieeiiie ettt et e e steeesaeeesnaeeensseeenseeennnes 16
4.2 How the TK Widg@et WOTKS........oeiiiiiiiiieeiiiee ettt e eearee e e e e e 16
4.3 Drag and Drop With TK........coooevuiieiiiiiiiiiiieeeee ettt eeeeter e e e e e e e e eeeeeeaes 16
4.4 TK Script EXAMPLE....cueieiieiiieiieeie ettt ettt ettt et sttt e e e tbee e eebeeeenenee s 16
4.4.1 The Communication Tab.........ccovuvvviiiiiiiiiieec e e e 17
442 The Commands Tab..........cooouiiiiiiiiiie et 17
443 The DAta TaAD......ccoiiiiiiieiiieeeee et e et e e e e e e e e e e e e eeeeeeeeees 17
444 The NEW PLOt TaD.....oiiiiiiieececeeee e et e e e e e e e e e e e 18
4.4.5 The EXiSting PIOtS TaD......coooouuvviiiiiieiieiieeeeeee ettt e e e e e 18
4.4.6 The Gui OPtions TaAD........veiiiiiiiie ettt ereea e e e e 18
4.4.7 The CallDACKS TaD......uvvveeiiiiieiieiiiieieee ettt eeete e e e e e eeaarareeeeeeeeeseasaeaaans 18

© Analog Flavor 2012-2016. All rights reserved.

BESPICE WAVE USER'S MANUAL

4.4.8 The Drag and DIOD TaD........ouvveeeieeeeeeeeeeeeeeeeeeee e e e e eeeaaeeeeeeeeeenaas 18
Chapter 5 Tk C/C++ Application INTEGIatioN.c.vveeeeeureeeeeereeeeeeeteeeeeeeieeeeeeereeeeeeaaeeeeeeeeeeens 19
5.1 The Library AcCeSS FUNCLIONS.evviiiiiiiieieieieeieeeeeeeeeeeeeeeeeeeeeee e eeeaeeeeeeeeeeaaeeeeeeeean 19
S5.1.1 tk_bspwave create widget from_path.........cccooceeieniiiiniinieee 19
5.2 Tk Application EXamPLe.......cccueeeeuiiiiiiieiiiieeciie ettt eieeesveeesiraee e e e e asvaeeaeeenes 20
Chapter 6 Widget Specific COMMANS.........cccveriieriieriieiieeieeiieeie et eee et e e ereeseeeaeeseneenes 22
6.1 Dragging Interactive Commands To BeSpice Wave.........ccccoeeeeviiiiiiniieieenieeen. 22
6.2 Dragging Curve Names From BeSpice Wave.........ccceecvevviieeiieciieniieiiecieeieee e, 22
Chapter 7 Accessing The Waveform ParSer........ooovvviviiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 23
Chapter 8 Extending BeSpice Wave's Waveform Parser...........ccoecvvevveeciienieeiiienieeieeiee e 24
Chapter 9 Extending BeSpice Wave With Graphical PIug-ins..........ccccceeeeiiieiciieeiiieesiieee e 25
Chapter 10 TTOUDIESNOOTING. ...cevieiieeiiieiieeie ettt ettt e ebeeette et esebeesbeeesbeeeenssaeeensaeeas 26
10.1 LIMIEAEIOMIS oottt e e et e e e e e et e e e e e e e e e e e e eeeeeeeeeeen e aeeeeeeeeaenaeeeanaeenannns 26
10.2 REPOIING EITOTS. . .iiviieiiieiieiiieeieeie ettt ettt e seaesbeesseessseessaesnsaenseeenns 26
10.3 LACENSE PIrODIEINIS. ... oottt e e e e e e e e e et e e e e e e e e e e enenans 26

© Analog Flavor 2012-2016. All rights reserved.

CHAPTER 1 BESPICE WAVE WIDGET

BeSpice Wave is a waveform viewer enhanced and specialized for visualizing and analyzing Spice
simulation results. Many different file formats are supported.

BeSpice Wave can be integrated into other applications. Therefore it is distributed as a shared or static
library. The integration makes use of BeSpice Wave's interactive commands. This user manual handles
the particularities of the widget integration. The interactive commands are documented in BeSpice
Wave's user manual.

The following platforms are supported:
* wxWidgets

Tk applications
* Tk scrips

* TkiInter (Python)
* Windows API

. Qt
* Wrappers for the Windows API for WPF, MFC, Qt, wxWidgets, wxPython, PyQt, Tk and
Tkinter.

The software is distributed in a compressed Analog Flavor archive that can be downloaded from our ftp
site. The file name is “analog_flavor.tar.gz”” and might have an extension indicating the version or build
date. Copy this archive to an appropriate location and decompress it using the shell command “tar xfz
analog_flavor.tar.gz”.

This will generate a directory “analog_flavor” with the following directory structure:
* analog_flavor, the main directory.

© bin, containing the wrappers for the main executables (Linux) or the binary executables
(Windows).

© documentation, containing the user manuals and documentation.

o examples, containing some basic examples for the use of Analog Flavor software and
examples for the use of the widget.

o license, the location of the license file and executables to start and stop the license server.

o platform, containing the binary executables and libraries for Linux 32 and 64 bit and
Windows X86 and X64 (64 bit).

The widget distribution contains examples that can be launched or compiled following the instructions
in readme.txt files.

© Analog Flavor 2012. All rights reserved. 5

BESPICE WAVE USER'S MANUAL

1.1 Waveform File Examples
Example waveform files and corresponding spice netlists can be found at:
...lanalog_flavor/examples/bspwave widget/examples/

The directory also contains an interactive command file. This file shows how interactive commands can
be used to control BeSpice Wave. The commands can also be transmitted over the widget interface.

1.2 Interactive commands

The interactive commands are documented in detail in BeSpice Wave's user manual. Some interactive
commands have been optimized for widget integrators.

When using the interactive mode the user has still full control of the tool. That means that curves or
data sections can be added or removed, plot windows can be closed or BeSpice Wave might be closed
by the user. As a consequence some interactive commands might fail.

1.2.1 Command Return Values

When executing an interactive command, BeSpice Wave returns a code that has been defined in the file
“af return_codes.h”. If the code “af code queued” is returned, the command is executed in a thread
and when the function returns it is not yet clear if the command will succeed. BeSpice Wave will
remain busy until the command has been executed. All further commands will be queued. The status of
the widget can be queried by sending the interactive command “get status”. BeSpice Wave is ready to
execute the next command when the returned code changes from “af code queued” to either
“af code ok” or “af code error”.

For script interfaces the returned code is converted to a string.

1.2.2 Command Result Values

When executing an interactive command that queries BeSpice Wave, one or several string values are
generated in addition to the return code of the interactive command function. These strings have to be
retrieved by an appropriate function. If the command result is an integer value, the returned string can
be converted accordingly.

For script interfaces the result values are directly converted to a list of strings.

1.2.3 The Control Panel

The control panel allows integrators to test some of the available interactive commands. It can be
activated by the interactive command “show_control panel”. For all provided examples it can also be
shown by selecting “Show Control Panel” from the “Dev” menu.

The control panel shows a notebook that allows to execute some interactive commands. The notebook
tab “Communication” shows the text command sent to the widgets and the returned answer.
1.2.4 The Command Logger

Once the BeSpice Wave widget has been integrated, it will be controlled by interactive commands.

© Analog Flavor 2012-2016. All rights reserved. 6

BESPICE WAVE USER'S MANUAL

These commands can be debugged using the command logger. It can be activated by the interactive
command “show _command logger”. For all provided example it can be shown by selecting “Show
Command Logger” from the “Dev” menu. All commands sent to BeSpice Wave and their answers are
recorded in The shown text editor.

1.3 Widget Styles

When creating a BeSpice Wave widget the “style” flag for the widget can be defined. All constants that
can be combined to define the style can be retrieved from the file “bspwave widget.h”. For script
interfaces these constants have to be defined as integer values such as 1 to activate debug mode.

* AF BSPWAVE STYLE DEBUG: activates debug mode. That means that additional messages
are logged. The user has control over the appearance of the widget from the tool's configuration
menu.

* AF BSPWAVE STYLE USE TOOLBAR: activates a tool bar.
* AF BSPWAVE STYLE USE NOTEBOOK: shows all pages in a notebook.

* AF BSPWAVE STYLE AUTO LOAD_SAVE CONFIG: automatically loads and saves the
tool's default configuration file.

All style flags defining the widget's appearance can also be set over interactive commands.

© Analog Flavor 2012-2016. All rights reserved. 7

BESPICE WAVE USER'S MANUAL

CHAPTER 2 C/C++ APPLICATION INTEGRATION

BeSpice Wave is written in C/C++. As a consequence the simplest way to integrate the widget is to use
the C interface. This requires to include the C header files when compiling and to link to either a shared
or a static library. The interface is written in C to make an integration with different compilers possible.

2.1 The Header Files

The headers for using BeSpice Wave widget consists of several files:

* “af return_codes.h”. This file defines return codes used by all Analog Flavor interfaces.

* “bspwave widget.h”. This file structures and constants common to all C/C++ BeSpice Wave
Widget interfaces.

* The 3" file depends on the used interface and will be specific to wxWidgets, Tk, etc. For Qt it is
the file “bspwave qt widget.h” for Windows it is “bspwave win_widget.h”.

» “af wp_types.h”. This file defines data types that are used to access BeSpice Wave's waveform
parser. The types also allow to exchange data between a plug-in defined by an integrator and
BeSpice Wave.

* “af wp plugin.h” and “bspwave plugin.h”. These header files needs to be included to

implement a non-graphical plug-in for waveform formats that are not natively supported by
BeSpice Wave. The interface can be used in the same way as illustrated in the Waveform Parser
API Documentation.

* The interface defined by “af wp plugin.h” and “bspwave plugin.h” can also be used to access

the waveform parser from an integrating applications. The interface can be used in the same
way as illustrated in the Waveform Parser API Documentation.

* BeSpice Wave can be extended by graphical plug-ins. An additional header file such as
“bspwave qt plugin.h” for Qt applications define the API for all graphical extensions. The
graphical extension does not necessarily have to be define any graphical elements. It can
entirely rely on the built-in widgets.

This chapter deals with the common aspects that of all C/C++ integrations. The interface specific
aspects will be handled separately.

2.2 The Access Functions

BeSpice Wave is entirely controlled by the following functions:

* A function used to create a BeSpice Wave widget. This function depends on the used interface
and returns a pointer to a window or NULL if it fails.

* A function sending interactive commands to BeSpice Wave. These functions allow to open files,

© Analog Flavor 2012-2016. All rights reserved. 8

BESPICE WAVE USER'S MANUAL

retrieve information on the parsed files, show curves and control the appearance and the
behavior of the tool. A more detailed information on interactive commands can be found in
BeSpice Wave's user guide.

* A function retrieving the results of interactive commands from BeSpice Wave. The returned

value is a NULL terminated list of C strings. The strings remain valid only until the next
interactive command sent. Integer return values are printed to strings.

* A function allowing to register callback functions. These functions allow to trigger actions in
the main application from events occurring in BeSpice Wave. The registering function is
specific to the interface but the registered function prototypes are identical to all interfaces.

All functions are thread-save. However on most platforms the widget should be created in the main
thread.

2.3 Registering Callback Functions

Callback functions are registered using an interface-specific function and the structure
“bspwave_widget.h” commonly defined in the header file “bspwave widget.h”.

The structure defines the following fields :

* The object pointer “callback object”. This object will be passed as first argument to all callback
functions.

* The function pointer “close button activated”. If this function is registered, a close button will
be added to the widget's tool bar. When the button is hit, this function will be called.

* The function pointer “curve highlighted”. If this function is registered, it will be called each
time a curve is highlighted. The flag “flag clear” will be set if highlighting is cleared on all
previously highlighted curves. The flag “from_browser” will be set if the curve was selected in
the browser window.

* The function pointer “curve unhighlighted”. If this function is registered, it will be called each
time a curve is un-highlighted in BeSpice Wave. The flags will be set like for
“curve highlighted”.

* The function pointer “curve activated”. If this function is registered, it will be called each time
the user activates a curve by double-clicking on it. The flags will be set like for
“curve_highlighted”.

* The function pointer “logger message”. If this function is registered, it will be called each time
BeSpice Wave emits an error message. The severity can range from 1 (information message) to
6 (debug message).

* The function pointer “status bar message”. If this function is registered, it is called each time
BeSpice Wave prints a message to the status bar. The message might include a value indicating
the progress of an action. This value ranges from 0 to 100.

2.4 Linking the Shared Library

The advantage of linking the shared library is that the tool size will be smaller if the library is used in
several tools. In addition the library can be updated without re-compiling the entire tool. However on

© Analog Flavor 2012-2016. All rights reserved. 9

BESPICE WAVE USER'S MANUAL

Linux this might require to adjust the LD LIBRARY PATH. Dynamically loaded libraries might be
incompatible and copying the tool from one location to another might cause problems.
2.5 Linking the Static Library

Linking the static library avoids all compatibility issues. However updating BeSpice Waves requires to
recompile the entire application.

The size of the static library will be considerably reduced when linking the entire application.

© Analog Flavor 2012-2016. All rights reserved. 10

BESPICE WAVE USER'S MANUAL

CHAPTER 3 THE WINDOWS API WIDGET

The BeSpice Wave Widget has been ported to the native Windows API. This widget can be used in
many different environments on Windows. We provide wrappers and examples for a use in a C# WPF,
VBS WPF, MFC, Qt, Tk and wxWidgets applications and from the script languages such Tk and
Python (TkiInter, wxPython and PyQt). Python makes use of the “ctypes” module to access the
underlying C library.

The examples have been conceived for an integration on X86 (32 bit Windows). The build instructions
might have to be adjusted for X64 (64 bit Windows application).

3.1 Widget Commands

The windows API is defined in the C header file “bspwave win widget.h”. The following functions are
available:

* win_bspwave_create_widget. This function creates a new BeSpice Wave widget. It is safe to
call it from a thread. If “NULL” is passed as parent, a top level window is created.

* win_bspwave process command_line. This function processes the command line arguments
such as “--socket <ip> <port>" in an identical way to the main BeSpice Wave application.

* win_bspwave execute_command. This function executes an interactive command. The
function returns a code like explained above.

* win_bspwave get command_result and win_bspwave get command_result line. These
commands allow to retrieve the results of queries submitted to BeSpice Wave. The first
command returns an array of NULL-terminated string. The second command returns a single
NULL-terminated string or NULL if the passed index is larger that the number of available
result strings.

* The access functions win_bspwave show_widget, win_bspwave reparent widget and
win_bspwave move_ widget allow to show or hide the widget, control the widgets size or to
reparent it. These commands are especially useful when used from Script.

* The function win_bspwave register callback allows to register callback functions. They are
called by BeSpice Wave when certain actions are triggered and allow the integrator to perform
corresponding actions.

* The function win_bspwave create and run_main creates a top level BeSpice Wave window
with menu bar and runs an event loop. If the argument “flag_run in thread” is 1, BeSpice Wave
executes in a thread and immediately returns from the function. Otherwise it returns when the
window is closed by the user. This represents the simplest way to integrate a BeSpice Wave
window to your application.

3.2 Integration to a Windows Application

Examples for the Integration of the BeSpice Wave widget to a native Windows application is given in

© Analog Flavor 2012-2016. All rights reserved. 11

BESPICE WAVE USER'S MANUAL

the directory
...lanalog_flavor/examples/bspwave_widget/examples/win_test

The examples implemented in the file mswBspWaveMainTestApp.c is the simplest possible example
for the use of the BeSpice Wave widget library. It simply creates a top level window and runs an event
loop.

The example in mswBspWaveWidgetTestApp.c creates a top level window and a BeSpice Wave widget
as child. A simple menu allows to perfom simple actions such as opening a new file or showing the
control panel or the command logger.

The readme.txt file gives some hints how the examples can be compiled using cmake. The makefile
generator cmake can be downloaded from http://www.cmake.org.

3.3 Integration to a WPF Application

By adding a wrapper the Windows API BeSpice Wave widget, it can easily be integrated into a C# or
Visual Basic WPF application. Some example files are shown in

...lanalog_flavor/examples/bspwave_widget/examples/wpf_win_test

Integrating to a WPF project requires a wrapper based on HwndHost and written in C++ CLR. It is
implemented in the files cliWinBspWaveWrapper.cpp and winBspWaveWrapperRuntime.cpp. These
files can be found in your installation tree. The basic steps for integrating BeSpice Wave to your WPF
project are the following:

Create a C++ CLR project that you can add to the same solution. In that CLR project you need to
compile the files cliWinBspWaveWrapper.cpp and winBspWaveWrapperRuntime.cpp.
In your C# or VBS project:

* Create a class inheriting from cliWinBspWaveWrapper which is implemented in the C++ CLR
part of your solution. This class can handle all callbacks emitted by BeSpice Wave in virtual
functions.

* Insert a border widget as placeholder window in your project's xaml file.

* Handle the window loaded event by instantiating the BeSpice Wave Wrapper and showing it as
child of the placeholder widget.

The example files and the readme.txt in
.../analog_flavor/examples/bspwave widget/examples/wpf win_test

give some additional hints.

3.4 Integration to a Qt Application

By adding a simple wrapper the Windows API BeSpice Wave widget, it can easily be integrated into a
Windows Qt application. BeSpice Wave is also available as Qt widget but using the Windows widget

© Analog Flavor 2012-2016. All rights reserved. 12

http://www.cmake.org/

BESPICE WAVE USER'S MANUAL

allows to create an integration that does not depend on a particular Qt version and does not have to be
compiled with a specific compiler. The examples in

...lanalog_flavor/examples/bspwave_widget/examples/qt_win_test

defines a Qt wrapper for the BeSpice Wave widget. It is implemented in qtWinBspWaveWrapper.h and
qtWinBspWaveWrapper.cpp. The wrapper is used in a simple widget example and in a docked widget
example. The wrapper might evolute and should be used by integrators.

Build instructions using qmake are given in the file readme.txt. They might have to be adjusted to your
Qt installation.

3.5 Integration to a wxWidgets Application

Like for Qt, the Windows API BeSpice Wave is wrapped by a C++ class to make it integrable into any
Windows wxWidgets application. BeSpice Wave is also available as wx widget but using the Windows
widget allows to create an integration that does not depend on a particular wxWidgets version and does
not have to be compiled with a specific compiler. The examples in

...lanalog_flavor/examples/bspwave_widget/examples/wx_win_test

defines a wxWidgets wrapper for the BeSpice Wave widget. It is implemented in
wxWinBspWaveWrapper.h and wxWinBspWaveWrapper.cpp. The wrapper is used in a simple widget
example. The wrapper might evolute and should be used by integrators.

Build instructions using cmake are given in the file readme.txt. They might have to be adjusted to your
wxWidgets installation.

3.6 Integration to a Tk Application

The Windows BeSpice Wave widget can be integrated to a Tk Script application on Windows.
Therefore the Tk module defined by the shared library

...lanalog_flavor/platform/windows/X86/af_bspwave_widget tk win.dll

must be loaded and used. The module defines the command af win_bspwave_ widget that can be used
to create a Tk window wrapping the BeSpice Wave widget. The tk script

...lanalog_flavor/examples/bspwave widget/examples/tk_win_test/example 1 _tk_win_bspwa
ve_widget.tcl

implements a simple Tk application making use of the Tk module and shows how to use the created

window to send interactive commands.

3.7 Integration to a Tk Application in C

The above Tk module can also be integrated into a Tk application implemented in C. The directory
...lanalog_flavor/examples/bspwave_widget/examples/tk_win_test cpp

contains an example implementing a Tk application in C/C++. The source code for building the library
“af bspwave widget tk win.dll” is also included. The directory also contains a readme.txt file with

© Analog Flavor 2012-2016. All rights reserved. 13

BESPICE WAVE USER'S MANUAL

build instructions for cmake and the required CMakeLists.txt file.

3.8 Integration to a Python Script

On Windows there are several possibilities to integrate BeSpice Wave. Your Analog Flavor distribution
contains examples for the integration of a simple top window and for the integration into PyQt,
wxPython and TkInter. They make use of the “ctypes” Python module. This avoids to have to handle
several differences between Python versions. All examples can be found in the directory

...lanalog_flavor/examples/bspwave_widget/examples/python_win_test.

The examples are based on the base modules bspwave win_interface.py, bspwave qt_interface.py
and bspwave_wx_interface.py. These modules might evolve and should be used for all integrations.

The simplest way to integrate BeSpice Wave is to simply create a top window like in example
example 1 _py bspwave top window.py. As BeSpice Wave runs in a thread, the Python interpreter is
not blocked.

The Python integrations can't make use of callback functionality.

3.8.1 Integration to a PyQt Application

The file bspwave_qt_interface.py implements wrapper widget for integrating BeSpice Wave to a PyQt
parent window. The example example 3 pyqt bspwave widget.py shows how to use the wrapper
widget in a simple qt interface. The example example 4 pyqt_bspwave_dock widget.py illustrates
the use in a docked widget.

3.8.2 Integration to a wxPython Application

The file bspwave_wx_interface.py implements wrapper widget for integrating BeSpice Wave to a
wxPython parent window. The example example 2 wxpython_bspwave widget.py shows how to
use the wrapper widget.

3.8.3 Integration to a Tk Inter Application

If your Python installation has been configured for TkInter, the Tk module created above can be used
from Python code. After having imported the module form af bspwave widget tk win.dll it can be
used as shown in example example 5 tk inter_bspwave widget.py.

© Analog Flavor 2012-2016. All rights reserved. 14

BESPICE WAVE USER'S MANUAL

CHAPTER 4 TK SCRIPT INTEGRATION

BeSpice Wave Widget can easily be integrated to a Tk script.

Open a Tcl/Tk interpreter window. After having loaded the Tk module using the command:
> load .../analog_flavor/platform/Linux/64/libaf_bspwave_widget tk 8 4.so
on Linux or
> load .../analog_flavor/platform/windowsX86/laf_bspwave_widget tk 8 4.dll

on Windows. Now the command “af bspwave widget” that creates a BeSpice Wave widget is
available. The tcl commands

> af _bspwave_widget .bspwave -style 71 -width 600 -height 300
> pack .bspwave -fill both -expand 1

will create a BeSpice Wave widget and show it in the main Tk window.
Remark: The file path of the load command might have to be adjusted to your platform.

Remark: The version number 8 4 indicates that the widget can be used for all Tk versions from
version 8.4.

4.1 af _bspwave_widget

The command “ af bspwave widget” creates a BeSpice Wave widget.

4.1.1 Synopsis

af bspwave widget pathName ?options?
4.1.2 Widget Specific Options

The widget can be created with the following options:

* -style <style> this option can activate a debug option and define if a notebook and a tool bar are
used. The integer value for “style” can be computed as explained above. If “71” is used, the
debug mode, the notebook and the toolbar are activated. The widget is also instructed to reload
a previously saved configuration.

e -width <witdth> defines the width of the widget. The widget's size is adjusted if it is used in a
grid or if is packed.

* -height <heigh> defines the height of the widget.

© Analog Flavor 2012-2016. All rights reserved. 15

BESPICE WAVE USER'S MANUAL

4.1.3 Widget Commands

The widget accepts the following commands:

* pathName execute_command <command>. This command sends an interactive command the
BeSpice Wave widget.

The commands allow to read files, show curves etc. The command execution returns a string value. The
integer return values from the ¢ function is converted to a string value such as “command succeeded”,
“command failed” and “command queued”.

The interactive commands sent to BeSpice Wave are documented in BeSpice Wave's user guide.

4.2 How the Tk widget works

The BeSpice Wave widget mainly uses a widget written for the Windows API or a widget using the
X11 interface for Linux. The widget connects to the TK event loop by registering a generic event
handler using “Tk CreateGenericHandler” and processes all X11 events concerning it's X11 windows.
After having been processed, the events are removed from the event loop. They are invisible to all other
event handlers.

The widget also processes events concerning drag and drop for the application's top window. However
these events are not removed from the event loop.

In addition to this BeSpice Wave registers an error handler. This error handler will catch all X11 errors
that occurred in BeSpice Wave. All other errors will be processed by the TK error handler.

4.3 Drag and Drop with Tk

The BeSpice Wave widget can accept drops in text format. However this might not be automatic on
Linux. BeSpice Wave uses the XDND protocol which is the standard protocol. See
http://www.newplanetsoftware.com/xdnd/ for more information on the used protocol.

However some applications require that the property “XdndAware” must be set on the top window of
the application using drag and drop. As BeSpice Wave is not intended to be the the top window of the
application, this must be done by the integrating window.

There are two possibilities how this can be achieved:

» if the application uses TkDND the top window property “XdndAware “ is set as soon as a dorp
target is registered.

* Bespice Wave can be instructed to be used as “XdndProxy”. This can be done by the interactive
command “use as drop proxy 17 . The command “use as drop proxy 0” removes the
“XdndProxy” property.

The integrating application should always call “use_as_drop_proxy 1” if it does not used TkDND.

4.4 Tk Script Example

An example script documenting the Tk script integration is available in the installation tree at

© Analog Flavor 2012-2016. All rights reserved. 16

http://www.newplanetsoftware.com/xdnd/

BESPICE WAVE USER'S MANUAL

...lanalog_flavor/examples/bspwave_widget/Tk/test/bspwave_example.tcl

The example requires Tk 8.5 or later. The tab “Tkdnd” requires the installation of Tkdnd. The example
creates a main window with a BeSpice Wave widget and a Tk notebook.

The Tk notebook has several tabs. Each of them handles a different aspect of the communication
between Tk script and BeSpice Wave.

4.4.1 The Communication Tab

This tab contains a text entry widget that logs the entire communication process. All interactive
commands sent to BeSpice Wave and the returned values are shown here. A button allows to clear the
text.

4.4.2 The Commands Tab

This tab contains several buttons. Each button sends a command to BeSpice Wave. The sent command
is logged in the “Communication” tab.

Some such as “open_file” return the status “command queued” as the command is executed in a thread
and BeSpice Wave does not wait for the result before returning from the function call. The current
status can be obtained by calling “get status”. The result of the previous command is returned the first
time “get status” returns something else than “command queued”.

When used in widget mode, BeSpice Wave does not automatically load and save the user's
configuration such as recent files, used fonts etc. Instead this has to be done by the interactive
commands “read configuration file” and “save configuration file”. This allows to specify a file
different from the default file.

The command “execute_command_file” allows to execute several commands at once by reading from
a text file. This might be important for testing and reporting problems.

4.4.3 The Data Tab

This tab allows to retrieve information on the loaded curve data. The data is organized in sections. Each
file generates at least one section but it might generate more than one section. This can occur if a
simulator performs multiple simulations for changing parameter values or analysis types.

This tab shows how to read all section names. When selecting a section, all curves available in this
section are read. A particular curve can be selected and plotted to a plot with a given name. This
operation allows to use wildcards. The plot name “*”” makes sure that the curve is plotted. If necessary
a new plot is created.

© Analog Flavor 2012-2016. All rights reserved. 17

BESPICE WAVE USER'S MANUAL

4.4.4 The New Plot Tab

This tab allows to create a new plot. The plot type can be selected. Several plot types allow to split the
current page instead of creating a new one. Therefore “create new tab” has to be unchecked.

4.4.5 The Existing Plots Tab

This tab shows how to retrieve the names of all plots of all available plot pages. It allows to switch to
existing plots and to clear all curves shown in an individual plot.

4.4.6 The Gui Options Tab

This tab shows how the appearance of the widget can be changed by using interactive commands. The
user doesn't have access to this functionality. The different options allow to optimize BeSpice Wave for
the space available in the parent application. It also allows to restrict user access to BeSpice Wave's
functionality.

4.4.7 The Callbacks Tab

This “Callback” tab allows to register callback functions. These functions can be either functions
defined by a script or C functions. Here no particular functionality is implemented for the callbacks.
The example simply prints a message indicating that a particular event occurred in BeSpice Wave.

4.4.8 The Drag and Drop Tab

This tab shows how drag and drop can be used to communicate with BeSpice Wave. The above text
widget serves a drag source. Instead of sending an interactive command over the usual interface
functions, it can be included in a xml statement and be dropped to BeSpice Wave.

The second text widget serves as drop target. Curves dragged from BeSpice Wave and dropped to this
widget are converted to a xml string indicating the concerned curves. The curve names might be
converted to a “*” if a complete section is concerned.

© Analog Flavor 2012-2016. All rights reserved. 18

BESPICE WAVE USER'S MANUAL

CHAPTER 5 TK C/C++ APPLICATION INTEGRATION

In a C/C++ application the BeSpice Wave widget can be integrated without using the interpreter.
Instead the C functions corresponding to Tk commands can be called directly.

Therefore the C function headers in
...lanalog_flavor/examples/bspwave_widget/tk/include

must be included. On Linux the shared library
...lanalog_flavor/platform/Linux/64/libaf_bspwave widget tk 8 4.so

or the static library
...lanalog_flavor/platform/Linux/64/libaf_bspwave widget tk 8 4 static.a

must be linked. On windows the shared library
...lanalog_flavor/bin/libaf_bspwave widget tk 8 4.dll

must be linked.
Remark: The file path might have to be adjusted to your platform.

Remark: the version number 8 4 indicates that the widget can be used for all Tk versions from version
8.4.

5.1 The Library Access Functions

The headers for using BeSpice Wave widget consists of 3 files:

* “af return_codes.h”. This file defines return codes used by all Analog Flavor interfaces.

* “bspwave widget.h”. This file defines structures common to all C/C++ BeSpice Wave Widget
interfaces.

* “bspwave tk widget.h”. This file defines the Tk specific access functions.
All C/C++ integrations have common aspects that have been detailed above. The function specific to
the Tk integration is the function used to create the Tk widget.
5.1.1 tk_bspwave_create_widget_from_path
Synopsis:

Tk_Window tk_bspwave_create_widget_from_path(Tcl_Interp *interp, Tk_Window
main_win, const char *window_path, int x, int y, unsigned int width, unsigned int
height, int style_flags, int argc, char **argv)

Arguments:

Tcl Interp *interp the used interpreter

© Analog Flavor 2012-2016. All rights reserved. 19

BESPICE WAVE USER'S MANUAL

Tk Window main_win the parent window
const char *window_path the hierarchical window path
intx,y the initial position of the widget in the parent window

unsigned int width, height the initial size of the widget

int style flags style flags
int argc reserved, should be set to 0
char **argv reserved, should be set to 0

The style flags can be combined from the values
AF BSPWAVE STYLE DEBUG
AF BSPWAVE STYLE USE TOOLBAR
AF BSPWAVE STYLE USE NOTEBOOK
defined in “bspwave Tk widget.h”.

5.2 Tk Application Example
Several example applications have been included to the distribution. The source code is located at
...lanalog_flavor/examples/bspwave_widget/tk_test/tk_bspwave_widget test x.cpp

It can be compiled by adapting and running the build script “build.sh”. This script will build
executables all C/C++ examples.

The Tk script example is more complete as it contains a Tk interface showing how interactive
commands can be used from Tk. Therefore the script example might be more appropriate to understand
the communication process over interactive commands.

test bspwave tk widget 1.c

This example is a pure C example. The other examples use C++ for convenience. The BeSpice Wave
Widget is created using the C API function “tk_bspwave create widget from path”.

test bspwave tk widget 2.cpp

This example calls the Tcl script “bspwave example.tcl” from a C program . This is a convenient way
to debug C and Tcl/Tk code.

test_bspwave_tk_widget_3.cpp

This example is similar to the first one. The difference is that the Tcl command “af bspwave widget”
is called to create the BeSpice Wave Widget.

© Analog Flavor 2012-2016. All rights reserved. 20

BESPICE WAVE USER'S MANUAL

test_bspwave tk widget 4.cpp

This example uses the tkBspWaveWrapper class to create a BeSpice Wave Widget. This class has some
methods that facilitate the use of interactive commands. It also defines some virtual functions that are
used as callback functions for some events that might occur in BeSpice Wave.

© Analog Flavor 2012-2016. All rights reserved. 21

BESPICE WAVE USER'S MANUAL

CHAPTER 6 WIDGET SPECIFIC COMMANDS

The interactive commands sent to BeSpice Wave are documented in BeSpice Wave's user guide. Some
interactive commands are only available for the widget integration. These commands are documented
here.

6.1 Dragging Interactive Commands To BeSpice Wave

Interactive commands can be sent to BeSpice Wave by calling the corresponding C functions. Another
possibility consist in using the drag and drop mechanism. A command or a set of commands can be
encapsulated into a short xml string such as:

<?xml version="1.0" 7>

<af bspwave command>

add_plot "new analog plot" analog 1

</af_bspwave _command>

If dropped to the BeSpice Wave widget, the command “add plot” will be executed. The Tk Script
example makes use of the module “Tkdnd” to demonstrate this mechanism.

6.2 Dragging Curve Names From BeSpice Wave

BeSpice Wave makes use of the drag and drop mechanism to export curves as comma separated values.
However when integrated it also allows to drag and drop an xml file defining curve names. Therfore an
option must be activated. After having sent the command

set_option use curve_names_for_internal_dnd 1
to BeSpice Wave, drag and drop within the tool yields a text string like the following:

<?xml version="1.0" ?>
<af _bspwave curve_list>
<curve section="fourbitadder.spi3" name="v(7)" />

</af _bspwave_curve_list>

This allows to implement interactions based on curve names instead on curve values.

© Analog Flavor 2012-2016. All rights reserved. 22

BESPICE WAVE USER'S MANUAL

CHAPTER 7 ACCESSING THE WAVEFORM PARSER

BeSpice Wave's waveform parser can be accessed directly by any integrating application. The interface
is a reduced version of the one described in the Waveform Parser API Documentation. This
documentation is available at .../documentation/waveform_parser_library.html in your software
distribution package. The header file that has to be included depends on the used platform. It is
“bspwave_qt parser.h” for Qt.

It takes the pointer to the generated widget as first argument. Some functions from the Waveform
Parser API have not been ported. It is not possible to open a new file. However the missing functions
are available as interactive commands.

The Waveform parser API must be called from the main thread. Otherwise an error is returned.

© Analog Flavor 2012-2016. All rights reserved. 23

BESPICE WAVE USER'S MANUAL

CHAPTER 8 EXTENDING BESPICE WAVE'S WAVEFORM
PARSER

BeSpice Wave's waveform parser can be extended to waveform formats that are not natively supported.
This mechanism has been described in the Waveform Parser API Documentation. This documentation
is available at .../documentation/waveform_parser library.html in your software distribution package.
The plug-in has to be registered and unregistered using the functions defined in “bspwave qt parser.h”
or equivalent.

BeSpice Wave attempts to load all shared libraries located in the same directory as it's binary as plug-

2

ins. This concerns all libraries called “libaf pluginso”.

© Analog Flavor 2012-2016. All rights reserved. 24

BESPICE WAVE USER'S MANUAL

CHAPTER 9 EXTENDING BESPICE WAVE WITH
GRAPHICAL PLUG-INS

BeSpice Wave can be extended by writing graphical plug-ins. These plug-ins do not necessarily have to
define any graphical elements themselves. To do so, include “bspwave qt plugin.h” or equivalent.

The graphical plug-in can also make use of the waveform parser. The mechanism has been described in
the Waveform Parser API Documentation. This documentation is available at
.../documentation/waveform_parser library.html in your software distribution package. All functions
and objects it can use for this purpose are passed to it in the function

“register waveform_parser functions”.

BeSpice Wave attempts to load all shared libraries located in the same directory as it's binary as plug-

2

ins. This concerns all libraries called “libaf pluginso”.

© Analog Flavor 2012-2016. All rights reserved. 25

CHAPTER 10 TROUBLESHOOTING

This section handles some issues that might occur when integrating BeSpice Wave as a widget.

10.1Limitations
The BeSpice Wave widget has some limitations over the complete tool.

* The Tcl/Tk widget requires a Tcl/Tk version with thread support to run correctly.

10.2Reporting Errors

When reporting errors following some recommendations might simplify support.

If the problem occurred for a specific waveform file, please include this file to your request.
If the problem concerns the graphical user interface, please include a screen shot.

If the problem occurred while executing interactive commands it might be possible to reproduce it by
generating a command file with the corresponding commands.

10.3License Problems

Running BeSpice Wave requires a license file. This file should be included in your software package.
However when moving the libraries or linking the static libraries the license file might no longer be
found. If BeSpice Wave does not find the license file “license.txt” or “af license.txt” please copy it to
the location of the linked shared library or to the location of the linked application. Alternatively it can
be copied to a parent directory or to a directory named “license” in a parent directory. However
BeSpice Wave only searches up to 5 parent directories.

© Analog Flavor 2012. All rights reserved. 26

	Chapter 1 BeSpice Wave Widget
	1.1 Waveform File Examples
	1.2 Interactive commands
	1.2.1 Command Return Values
	1.2.2 Command Result Values
	1.2.3 The Control Panel
	1.2.4 The Command Logger

	1.3 Widget Styles

	Chapter 2 C/C++ Application Integration
	2.1 The Header Files
	2.2 The Access Functions
	2.3 Registering Callback Functions
	2.4 Linking the Shared Library
	2.5 Linking the Static Library

	Chapter 3 The Windows API Widget
	3.1 Widget Commands
	3.2 Integration to a Windows Application
	3.3 Integration to a WPF Application
	3.4 Integration to a Qt Application
	3.5 Integration to a wxWidgets Application
	3.6 Integration to a Tk Application
	3.7 Integration to a Tk Application in C
	3.8 Integration to a Python Script
	3.8.1 Integration to a PyQt Application
	3.8.2 Integration to a wxPython Application
	3.8.3 Integration to a Tk Inter Application

	Chapter 4 Tk Script Integration
	4.1 af_bspwave_widget
	4.1.1 Synopsis
	4.1.2 Widget Specific Options
	4.1.3 Widget Commands

	4.2 How the Tk widget works
	4.3 Drag and Drop with Tk
	4.4 Tk Script Example
	4.4.1 The Communication Tab
	4.4.2 The Commands Tab
	4.4.3 The Data Tab
	4.4.4 The New Plot Tab
	4.4.5 The Existing Plots Tab
	4.4.6 The Gui Options Tab
	4.4.7 The Callbacks Tab
	4.4.8 The Drag and Drop Tab

	Chapter 5 Tk C/C++ Application Integration
	5.1 The Library Access Functions
	5.1.1 tk_bspwave_create_widget_from_path

	5.2 Tk Application Example

	Chapter 6 Widget Specific Commands
	6.1 Dragging Interactive Commands To BeSpice Wave
	6.2 Dragging Curve Names From BeSpice Wave

	Chapter 7 Accessing The Waveform Parser
	Chapter 8 Extending BeSpice Wave's Waveform Parser
	Chapter 9 Extending BeSpice Wave With Graphical Plug-ins
	Chapter 10 Troubleshooting
	10.1 Limitations
	10.2 Reporting Errors
	10.3 License Problems

